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Note

A new limited-range equation for use in non-isothermal
thermogravimetric analysis
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During the last decade, several workers have made use of thermogravimetric
(TG) and derivative thermogravimetric (DTG) traces for evaluating kinetic
parameters'. The usual rate expression in this context can be put in the form,

d2/dT = (Zj$)(1 —a)" exp (— E/RT) (1)

where o =fraction decomposed at temperature 7, Z = preexponential term,
¢ = heating rate (d7/dr), # = order of reaction, E = energy of activation and R = gas
constant.

Rearranging and putting eqn (1) in the definite integral form gives:

x T
f do/(1—2)" = (Z/9) f exp (—E/RT)dT )
o o

The main difficulty in using eqn (2) concerns the integration of the temperature-
dependent integral, {7 exp (— E/RT)dT. It is a special case of the incomplete gamma
function? and two solutions suitable for further manipulation have been given3—3
and compared by Doyle®. Various approximations have also been made to integrate
the aforesaid integral®.

Van Krevelen et al.7 have used an empirical approximation,

exp (—E/RT) =~ [(T[T)e™ 'JEF™ 3)

where 7, is the DTG peak temperature. However, recently, Dharwadkar and
Karkhanawala® have criticized the undue importance attached to 7, by earlier
workers in this field, on the ground that T, for the same system, varies with factors
such as heating rate, sample size and sample mass. They point out that 7}, the
temperature of the initiation of the reaction, is independent of these factors and may
be taken as a constant for the same system. Such a view bhas also been generally
accepted by most of the recent workers.

As an alternative to the Van Krevelen approximation, we wish to propose a
new approximation using T; instead of 7.

*To whom all correspondence should be addressed.
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exp (—E/RT) ~ [(T/Tye™ "] == @
An empirical constant x may be introduced in eqn (4) in order to make the LHS term
as nearly equal as possible to the RHS term, so that we may write

exp (—E[RT) = [(T[T;)"e~ }]E/RTD 5)
where x is constant for a limited range. Of particular interest to us here would be a
range where 7/T; varies from 1 to 1.25 because the greater part of the decomposition

vy

process would take piace within this range. We may evaluate x as foliows:

Taking logarithms, eqn (5) becomes

(—E/RT) = [x In (T/T)—1](E/RT)) ©®
Putting 7/7T; = m and rearranging,

~i/m=[xInm-1] @)

Even though eqn (7) is, strictly speaking, non-linear, a plot of 1/m versus In m is found
to be a straight line for a limited range (1 <m<1.25), with the slope equal to —x;
x is found to be 0.89 by the least squares method (correlation coefiicient = 1.00)
(cf. Fig. 1).

Fig. 1. Limited-range linearity between 1/m and In m.
Oz the basis of th
eqgn (2) to get
[1-(1 -a)(l~-) _ ZCXP (—B/X) T(’+l) (8)
1—n &T? B+1

where f=(xE[/RT))
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Taking logarithms and rearranging,

1-(1~a)“"’]_ [Zexp(—ﬁ/x)] 9
log[ — = log ————_¢'1}’(ﬁ+1) +{B+DlogT )

For the special case n = 1, the LHS of eqn (9) becomes log [—In (1 —&)]. A plot
of the LHS expression versus log 7 would be a straight line, from whose slope E can
be computed: kncwing E, Z can be evaluated from the intercept. Prior determination
of n is necessary as is also the case with Van Krevelen’s equation and with the
integral methods. An approximate value of n for this purpose can be obtained by the
method suggested by Horowitz and Metzger®. It may be noted that eqn (9) does not
make use of the highly “procedural™ 7, but uses the more characteristic 7; instead.

The new equation was applied for thermal decomposition data reported in the
literature and was found to give satisfactory results. Table ! presents kinetic
parameters for some complexes calculated by using the present equation as well as
the equations suggested by earlier workers. It may be seen from Table 1 that the

TABLE 2

DATA SHOWING THE APPLICABILITY OF THE EQUATION* I/m=A—xInom
standard deviation = 0.180%.

m xinm A—xIlnm Ifm Deciation % deciation
1.0t 0.0088 0.9867 0.9501 —0.0034 —0.343
1.02 0.0175 0.9780 0.9804 -0.0024 —0.245
1.03 0.0262 0.9693 0.9709 —0.0016 —0.165
1.04 0.0348 0.9607 0.9615 —0.0008 —0.683
1.05 0.0435 0.9520 0.9524 —0.0004 —0.042
1.06 0.0519 0.9436 0.9434 +0.0002 +0.021
1.07 0.0603 0.9352 0.9346 +0.0006 +0.064
.08 0.0685 0.9276 0.9259 +0.0011 +0.119
1.09 0.0767 0.9188 0.9174 +0.0014 +0.153 .
[.10 0.C849 0.9106 0.9091 +0.0015 +0.165
1.11 0.0929 0.9026 0.9009 +0.0017 +0.189
1.12 0.1009 0.8946 0.8929 +0.0017 +0.190
1.13 0.1088 0.8867 0.83850 +0.0017 +0.192
1.14 0.1166 0.8789 0.8772 +0.0017 +0.194
1.15 0.1245 0.8710 0.8696 +0.0014 +0.161
1.16 0.1322 0.8633 0.8621 +0.0012 +0.139
1.17 0.1398 0.8557 0.8547 +0.0010 +0.117
1.18 0.1475 0.8480 0.8475 +0.0005 +0.059
1.19 0.1547 0.8408 0.8403 +0.0005 +0.060
1.20 0.1624 0.8331 0.8333 —0.0002 —0.024
1.21 0.1697 0.8258 0.8264 —0.0006 —0.073
1.22 0.1771 0.8184 0.8197 —0.0013 —~0.159
1.25 0.1843 0.8112 0.8130 —0.0018 —0.221
1.24 0.1914 €.8041 0.8065 —0.0024 —0.298
1.25 0.1986 0.7969 0.8000 —0.0031 —0.388

* The equation given in the text of the paper, i.e., 1/m =1—xIn m, after linearisation by the least-
scuares technique becomes 1/m = 4 —x In m, where 4 =0.9955 and x = 0.8898.
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parameters obtained by using the present equation lie generally close to those
obtained by using the earlier equations. The new equation seems to possess the
accuracy associated with the integral methods as well as the computational advantage
of the Van Krevelen equation; at the same time, it has the advantage of employing the
more reliable T; instead of 7, used by Van Krevelen.
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